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Abstract Targeted drug delivery provides a possible
method for the transfer of drug molecules into cancer
cells. Liposomes together with a drug, such as Doxoru-
bicin (DOX) inside the liposomes, can be formed as a
nano-capsule. In this study, we are interested in finding
a favorable size of liposome and an appropriate shape of
DOX cluster: sphere, cylinder or ellipsoid. Using mathe-
matical modeling, the interaction energy of the system is
obtained from the Lennard-Jones potential and the contin-
uum assumption which assumes that discrete atomic struc-
ture can be replaced by an average atomic density spread
over a surface. The numerical results show that the spherical
shape gives the lowest energy at the equilibrium configu-
ration amongst the three shapes. In the case of equivalent
surface areas, the spherical shape gives the energy lower
than −4,000 kJ/mol at the equilibrium while the energies
for the other cases do not come close to this level. Further
in the case of a liposome of 50 nm in radius, the sphere of
radius 49.726 nm, equivalent to 31,072 nm2 surface area,
gives the minimum energy at −6,642 kJ/mol. However, an
equivalent cylindrical shape is not possible due to geomet-
ric constraints. The lowest minimum energy for the ellipsoid
occurs for equal major and minor axes, namely for the
spherical case. The results presented here are a first step
in the design and implementation of a drug molecule for a
targeted drug delivery system.
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Introduction

Cancer remains a major health problem around the world,
even though many successful treatments have been devel-
oped so far. Based on GLOBOCAN 2008 report [1], there
were over 10 million patients suffering from cancer, and
about seven million of them died. Chemotherapy is an
accepted treatment that can cure cancer and has raised the
survival ratio in patients. A new approach for chemother-
apy using nanotechnology is progressing in many research
groups [2]. Using nanotechnology, nanocarriers can be
designed to carry multiple drugs to the target cells based
on size and shape of materials, surface functionality and
the surrounding environment. There are many advantages
for the use of nanocarriers over free drugs; that are; drugs
can be protected from premature degradation and from
interacting with the biological environment; the absorp-
tion of the drugs into selected target cells is increased,
and the penetrating ability into other healthy cells is
removed.

Doxorubicin(DOX) is a well known drug that has been
widely used in cancer treatment. It has become well-known
from its utilization of DOX primary form, adriamycin, to
cure breast cancer, and the results show that adriamycin has
more potential in the treatment [3]. A number of researchers
have tried to directly transport DOX to targeted cells in
order to reduce side effects from the chemotherapy treat-
ment, and to investigate the capability of DOX in the cancer
treatment. Meng et al. [4] and Heister et al. [5] utilize car-
bon nanotubes and decorated carbon nanotubes as a carrier
for DOX. These authors find that both in vitro and in vivo,
DOX encapsulated in carbon nanotubes is more effective
than free DOX. Heister et al. [5] propose that single-walled
carbon nanotubes have the potential to carry drug molecules
to cancer cell sites. Lu et al. [6] utilize multi-walled carbon
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nanotubes together with a magnetic field to load and unload
DOX to the target. The efficiency of unloading depends
on a pH condition. Wang et al. [7] investigate the effi-
ciency of DOX transportation worn by laponite nanodisks.
Further, Prabaharan et al. [8] use gold nanoparticles stabi-
lized with a monolayer of copolymer as a carrier, where
DOX is combined with other kind of chemical molecules
[9, 10]. Meng et al. [11] design a new method to carry DOX
to overcome a drug resistance in a cancer cell line using
mesoporous silica as a drug vehicle. Their conclusion states
that the mesoporous silica nanoparticles is applicable and
the toxicity is less than the use of free DOX. Lankelma et
al. [12] derive a simple mathematical model to predict the
extent of cancer cell growth and the effect of DOX con-
centration in comparison to experimental data. They find
that their model can be used to describe the findings in the
experiment.

Liposome, a spherical structure comprising of two lay-
ers of lipid, is used as a delivery vehicle for gene therapy
[13] and drug treatment [14] due to the ability of pene-
trating through the cell membrane. It is also considered as
a carrier of DOX for cancer treatment. The suitable size
of a liposome used as a nanocapsule ranges from 70 to
200 nm in diameter [15–17]. The shapes of DOXs, such
as cylinder and ellipsoid, encapsulated in the liposome are
varied depending on the method of the syntheses and the
intensity of the solution. Furthermore, the size and shape
of the liposome can also be modified to accommodate the
shapes of those DOXs [18, 19]. Gordon et al. [20] study
phase II stealth liposomal DOX in platinum- and paclitaxel-
refractory ovarian cancer. The results suggest that stealth
liposomal DOX has an activity in a refractory epithelial
ovarian cancer, and the toxicity is low. Johnston and Gore
[21] investigate the effect of Caelyx, a drug molecule con-
sisting of DOX hydrochloride encapsulated in the stealth
liposome, in phase II ovarian cancer. Caelyx has signifi-
cantly affected the activity for the second-line treatment of
ovarian cancer. Vaage et al. [22] utilize DOX encapsulated
in sterically stabilized liposomes to treat human ovarian car-
cinoma xenografts, where mice tumor is used as a model.
This study shows that not only DOX contained in liposomes
can cure the cancer cell but it is also more effective than the
use of free DOX. Hong et al. [23] compare the results of
efficiency of DOX encapsulated in liposome between with
and without surface coating, polyethylene glycol coating in
C-26 tumor-bearing mice. They find that there is no differ-
ence between the two cases, and they conclude that surface
coating with polyethylene glycol is not suitable for C-26
tumor-bearing. Lee and Low [24] study three conditions of
DOX which are folate tumor cell targeting liposomal DOX,
non-targeting liposomal DOX, and free DOX in vitro. The
first case has 45 times of DOX loading higher than that
in the DOX in non-targeting case, and 1.6 times of DOX

loading higher than that in the case of free DOX. However,
the toxicity of the first case is also higher than the latter two
cases. Moreover, Ahmad et al. [25] state that a liposome
encapsulating DOX is highly successful in the treatment of
lung cancer in mice.

In terms of mathematics, Baowan et al. [26] study the
energy behavior of liposomes encapsulating silica com-
pound as a representative of a drug molecule. Their results
show that the equilibrium radius of liposome is in a rela-
tionship with the location of the silica compound. Their
study inspires us to progressively study the drug molecule
contained inside a liposome. Here, we consider a clus-
ter of DOX molecules as a drug molecule, and employ a
principled mathematical technique to calculate the energy
of the system. The configuration of a lipid molecule in
a liposome is taken from the Martini coarse grain model
[27] and the Lennard- Jones parameters are taken from
the work of Baowan et al. [26]. Our liposomal systems do
not consider the effect from the solution both inside and
outside the liposomes. We assume first that DOX and lipo-
somes are stable then we investigate the energy between
them from the Van der Waals force between non-bonded
atoms. In other words, this is the interaction energy of the
system.

In this paper, the molecular interaction between two
molecules is given in the next section. Then a mathematical
derivation is presented, and the calculation of the interac-
tion energy between a drug and a liposome is detailed in
section “Interaction energy between drug and liposome”.
Furthermore, the numerical result is given in section
“Numerical result and discussion”. Finally, a discussion of
this study is presented in section “Summary”.

Molecular interaction

The non-bonded interaction energy between two molecules
of discrete structures is obtained by a summation of all non-
bonded atomic pairs

E =
∑

i

∑

j

�(ρij ),

where �(ρij ) is the potential function of atom i and atom
j and ρij is the distance from the atom i to atom j . When
the number of atomic pairs tends to infinity, the summation
can be replaced by the integration, hence the total potential
energy can be calculated using the continuous approxima-
tion. In this study, we consider two cases of the integration
depending on the structural layers of the liposome which
can be either spherical surface or spherical volume. Firstly,
we assume that atoms are uniformly distributed over the sur-
face of a drug molecule and of a layer of a liposome, then we
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employ double surface integral instead of double summation
to give

E = η1η2

∫

S2

∫

S1

�(ρ)dS1dS2,

where η1 and η2 are the mean surface densities of the drug
and the intermediate layer of a liposome, respectively. S1

and S2 are surface elements of the drug and of the interme-
diate layer of a liposome. Secondly, we assume the surface
integral for a drug molecule whereas atoms on a layer of a
liposome are assumed to be distributed over a spherical vol-
ume. Then we utilize a volume integral of liposome where
we may deduce

E = ηω

∫

V

∫

S

�(ρ)dSdV,

here η is the mean surface density of the drug, and ω is
the mean volume density of the liposome. S is the surface
element of the drug, and V is the volume element of a thick
layer of a liposome.

In this research, we use 6–12 Lennard-Jones potential to
calculate the energy of system. The function can be written
in a form

�(ρ) = 4ε

[
−

(
σ

ρ

)6

+
(

σ

ρ

)12
]

,

where ε is the well depth and σ is the Van der Waals
diameter. For the different types of atoms, we can use an
empirical mixing rule for ε and σ which are given by ε =
(ε1ε2)

1/2 and σ = (σ1 + σ2)/2, where number 1 and num-
ber 2 are assigned to atomic type 1 and 2, respectively. The
Lennard-Jones potential function can also be rewritten as

�(ρ) = − A

ρ6
+ B

ρ12
,

where A = 4εσ 6 and B = 4εσ 12 are the attractive and
repulsive constants, respectively. Throughout this study, we
utilize the second form of the function to calculate the
energy of the system.

In this work, we only consider the van der Waals inter-
action arising from the Lennard-Jones function. It has been
shown that the electrostatic energy plays only a minor role
in the system involving a liposome encapsulating a charged
particle [26].

Mathematical derivations

In this research, we study three different shapes of a drug
molecule; that are, sphere, cylinder, and ellipsoid, encapsu-
lated at the centre of a liposome. Further, we assume that
the energy contribution of the drug arising only from the
surface, hence a surface integral is used. In terms of the lipo-
some, it comprises of six layers which are two head groups,

two intermediate layers and two tail groups. The interme-
diate layers are modelled as spherical surfaces, whereas
the head groups and the tail groups are represented by
the spherical shell shape. Hence, both surface and volume
integrals are utilized to determine the energy contribution
arising from the liposomal capsule. To start, we introduce
the calculations for surface and volume integrals for the cap-
sule and they are presented in the following sections. Then
the surface integrals for the three shapes of the drug are
determined.

Spherical surface integral of the capsule

The interaction energy between a spherical surface and a
point is given by

E = η

∫

S

�(ρ)dS,

which can be written in the spherical coordinates as,

E = η

∫ π

−π

∫ π

0
�(ρ)a2 sin φ dφdθ

= η

∫ π

−π

∫ π

0

(
− A

ρ6
+ B

ρ12

)
a2 sin φ dφdθ, (1)

where η is the mean atomic surface density of the sphere and
a is the radius of the sphere. A schematic model for an atom
interacting with a spherical surface is depicted in Fig. 1a.
Now we consider

IS
n =

∫ π

−π

∫ π

0

a2 sin φ

ρ2n
dφdθ, n = 3, 6.

Noting that E = η(−AIS
3 + BIS

6 ). The coordinates for a
point and a spherical surface centred at the origin are given
by

(xp, yp, zp) = (0, 0, δ), and

(xs, ys, zs) = (a sin φ cos θ, a sin φ sin θ, a cos φ).

Consequently, the distance ρ2 between the two points can
be given by ρ2 = a2 + δ2 − 2aδ cos φ. Hence, IS

n becomes

IS
n = a2

∫ π

−π

∫ π

0

sin φ

(a2 + δ2 − 2aδ cos φ)n
dφdθ.

We let t = a2 + δ2 − 2aδ cos φ and change the integration
variable to obtain

IS
n = πa

δ(n − 1)

[
1

(a − δ)2(n−1)
− 1

(a + δ)2(n−1)

]
.
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Fig. 1 An atom interacting with
(a) spherical surface,
(b) spherical volume, and
(c) spherical shell volume

Next, we use a binomial expansion for the terms (a −
δ)2(n−1) and (a + δ)2(n−1), and eliminate the zero summa-
tion, so we get

IS
n = 2π

n − 1

n−2∑

k=0

(
2(n − 1)

2k + 1

)
a2(n−k−1)δ2k

(a2 − δ2)2(n−1)
, n = 3, 6.

(2)

We note that

(a + δ)2(n−1) =
2(n−1)∑

k=0

(
2(n − 1)

k

)
a2(n−1)−kδk.

Spherical volume integral of the capsule

The interaction energy between a spherical volume and a
point, as illustrated in Fig. 1b, is given by

E = ω

∫

V

�(ρ)dV = ω

∫ π

0

∫ π

−π

∫ a

0
�(ρ)r2 sin φ drdθdφ,

where ω is the mean volume density of the sphere. Similar
to a previous case, we consider

IV
n =

∫ π

0

∫ π

−π

∫ a

0

r2 sin φ

ρ2n
drdθdφ, n = 3, 6.

In this case, the coordinates for a point and a typical volume
element of a sphere centred at the origin are given by

(xp, yp, zp) = (0, 0, δ), and

(xv, yv, zv) = (r sin φ cos θ, r sin φ sin θ, r cos φ).

Then, we have ρ2 = r2 +δ2 −2rδ cos φ and IV
n becomes

IV
n =

∫ π

0

∫ π

−π

∫ a

0

r2 sin φ

(r2 + δ2 − 2rδ cos φ)n
drdθdφ

= π

δ(n − 1)

∫ a

0

[
r

(r − δ)2(n−1)
− r

(r + δ)2(n−1)

]
dr.

We use a by parts integral technique to integrate each term,
and then combine the coefficients of the same polynomials
to obtain

IV
n = − πa

δ(n − 1)(2n − 3)

(
1

(a − δ)2n−3
− 1

(a + δ)2n−3

)

− π

δ(n−1)(2n−3)(2n−4)

(
1

(a−δ)2n−4
− 1

(a+δ)2n−4

)
.

Next, we employ a binomial expansion for (a−δ)2n−3, (a+
δ)2n−3, (a−δ)2n−4, and (a+δ)2n−4 then eliminate the zero
summation, so we have

IV
n = − 2π

(n − 1)(2n − 3)

n−2∑

k=0

(
2n − 3
2k + 1

)
a2(n−k−2)+1δ2k

(a2 − δ2)2n−3

− π

(n − 1)(n − 2)(2n − 3)

n−3∑

k=0

(
2(n − 2)

2k + 1

)

× a2(n−k−2)−1δ2k

(a2 − δ2)2(n−2)
, n = 3, 6.

For the spherical shell shape as shown in Fig. 1c, the
interaction energy may obtain by subtracting the interaction
energy between a point and a smaller spherical volume from
that of a larger spherical volume. We assume that a1 and a2

are the radii of an inner and an outer spheres, respectively,
therefore, we may deduce

IV
n = − 2π

(n − 1)(2n − 3)

n−2∑

k=0

(
2n − 3
2k + 1

)

×
[

a
2(n−k−2)+1
2 δ2k

(a2
2 − δ2)2n−3

− a
2(n−k−2)+1
1 δ2k

(a2
1 − δ2)2n−3

]

− π

(n − 1)(n − 2)(2n − 3)

n−3∑

k=0

(
2(n − 2)

2k + 1

)

×
[
a

2(n−k−2)−1
2 δ2k

(a2
2 − δ2)2(n−2)

− a
2(n−k−2)−1
1 δ2k

(a2
1 − δ2)2(n−2)

]
, n=3,6. (3)

Note that both Eqs. 2 and 3 have the terms δ2k/(a2 − δ2)m

which involve a distance between two elements where
m and k are integers. For convenient, we define I ∗

m =
δ2k/(a2 − δ2)m, and next we need to integrate I ∗

m with
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respect to a shape of the drug molecule to obtain a molecular
interaction between a drug and a spherical capsule.

Spherical drug molecule

We consider both the interaction energies between a spher-
ical drug molecule and an outer spherical surface, and that
between a spherical drug molecule and an outer spherical
shell volume as shown in Fig. 2. The coordinates for atoms
on a drug molecule are given by

(x, y, z) = (b sin φ cos θ, b sin φ sin θ, b cos φ),

where b is a radius of the drug. Next we calculate

Jm,a =
∫ π

−π

∫ π

0
I ∗
mb2 sin φ dφdθ

=
∫ π

−π

∫ π

0

δ2k

(a2 − δ2)m
b2 sin φ dφdθ.

For the spherical shape, δ2 = b2 is the distance from the
centre of a liposome to a surface of the drug molecule, so
we may deduce

Jm,a =
∫ π

−π

∫ π

0

b2k

(a2 − b2)m
b2 sin φ dφdθ.

By straightforward integration technique, we get

Jm,a = 4πb2(k+1)

(a2 − b2)m
. (4)

The interaction energy IS
n between the outer spherical

surface and the drug can be obtained by substituting Jm,a

given by Eq. 4 into Eq. 2, whereas the interaction energy
IV
n between the outer spherical shell volume and the drug

can be determined by substitute Jm,a defined by Eq. 4 into
Eq. 3. Further, the total energies of the two systems can be
evaluated by η1η2(−AIS

3 + BIS
6 ) and ηω(−AIV

3 + BIV
6 ),

respectively.

Fig. 2 Spherical drug molecule interacting with (a) outer spherical
surface and (b) outer spherical shell volume

Cylindrical drug molecule

In the case of a cylindrical drug molecule, we consider both
the cylindrical surface area and the two circular areas at the
ends. The details are as follows.

Cylindrical surface area

The coordinates for atoms on a cylindrical surface are given
by

(x, y, z) = (b cos ϕ, b sin ϕ, z),

where b is a radius of the cylindrical drug molecule with
length L as depicted in Fig. 3. Next we evaluate

J 1
m,a =

∫ L/2

−L/2

∫ π

−π

I ∗
mb dϕdz =

∫ L/2

−L/2

∫ π

−π

δ2k

(a2−δ2)m
b dϕdz.

For the cylindrical shape, we have δ2 = b2 + z2, so that we
may deduce

J 1
m,a =

∫ L/2

−L/2

∫ π

−π

(b2 + z2)k

[a2 − (b2 + z2)]m b dϕdz.

We then expand [a2 − (b2 + z2)]m using a binomial expan-
sion to obtain

J 1
m,a =4πb

∞∑

l=0

(
m + l − 1

l

)
1

a2(m+l)

∫ L/2

0
(b2+z2)k+ldz.

Let z = b tan α, then J 1
m,a becomes

J 1
m,a = 4π

∞∑

l=0

(
m+l−1

l

)
b2(k+l+1)

a2(m+l)

∫ arctan(L/2b)

0

1

(cos2 α)k+l+1
dα.

We use the integral expression from the formula TI (240)
given in [28] which is

∫
dx

(cos2 x)ν
= sin x

2ν − 1

×
[
sec2ν−1x+

ν−1∑

i=1

22i−1�2(ν)�(2ν − 2i − 1)

(ν−1)�2(ν−i)�(2(ν−1))
sec2ν−2i−1x

]
.

Fig. 3 Cylindrical drug molecule interacting with (a) outer spherical
surface and (b) outer spherical shell volume
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Now we define Dν(x) = ∫
(cos2 x)−νdx, so we have

J 1
m,a = 4π

∞∑

l=0

(
m + l − 1

l

)
b2(k+l+1)

a2(m+l)

×
[
Dk+l+1(arctan(L/2b)) − Dk+l+1(0)

]
,

and if k=0 and l=0 then D1(x) = L/2b for any value of x.

Circular areas at the two ends

The coordinates for atoms on the open ends of the cylinder
are given by

(x, y, z) = (r cos ϕ, r sin ϕ, ±L/2),

Now, we have δ2 = r2 + L2/4, so that we may deduce

J 2
m,a =

∫ 2π

0

∫ b

0

(L2/4 + r2)k

[a2 − (L2/4 + r2)]m r drdϕ.

Follow the similar method, we expand [a2 − (L2/4 + r2)]m
using a binomial expansion to obtain

J 2
m,a =2π

∞∑

l=0

(
m+l−1

l

)
1

a2(m+l)

∫ b

0
(L2/4 + r2)k+lrdr.

Let t = L2/4 + r2, then the equation can be straightfor-
wardly integrated to obtain

J 2
m,a = π

∞∑

l=0

(
m + l − 1

l

)

× a−2(m+l)

k + l + 1

[
(L2/4 + b2)k+l+1 − (L2/4)k+l+1

]
.

Therefore, we have

Jm,a = J 1
m,a + 2J 2

m,a

= π
∑∞

l=0

(
m + l − 1

l

)
1

a2(m+l)

×
[
4b2(k+l+1)

[
Dk+l+1(arctan(L/2b))−Dk+l+1(0)

]

+2
1

k+l+1

[
(L2/4+b2)k+l+1−(L2/4)k+l+1

]]
. (5)

Ellipsoidal drug molecule

The coordinates for atoms on an ellipsoidal surface are
given by

(x, y, z) = (b sin φ cos θ, b sin φ sin θ, c cos φ),

where b is a minor axis of the ellipsoid and c is a major axis
of the ellipsoid as shown in Fig. 4. Next we determine

Jm,a =
∫ π

−π

∫ π

0
I ∗
mb sin φ

[
(b cos φ)2 + (c sin φ)2

]1/2

dφdθ

=
∫ π

−π

∫ π

0

δ2k

(a2−δ2)m
bsin φ

[
(b cos φ)2+(c sin φ)2

]1/2

dφdθ.

For the ellipsoidal shape, δ2 = (b sin φ)2 + (c cos φ)2, so
we may deduce

Jm,a =
∫ π

−π

∫ π

0

[(b sin φ)2 + (c cos φ)2]k
[a2 − (b sin φ)2 − (c cos φ)2]m b sin φ

×
[
(b cos φ)2 + (c sin φ)2

]1/2

dφdθ.

The above integrand is independent of θ , therefore we have
2π , and then we rearrange the above integral to obtain

Jm,a = 4πb(−1)m(b2 + c2)k

×
∫ π/2

0

sin φ
[
1− (b cos φ)2+(c sin φ)2

b2+c2

]k[(b cos φ)2+(c sin φ)2]1/2

[−(a2−b2) + (c2−b2) cos2 φ]m dφ.

On expanding
[
1 − (b cos φ)2+(c sin φ)2

b2+c2

]k

in terms of a bino-

mial expansion then Jm,a becomes

Jm,a = 4πb

(a2 − b2)m

k∑

i=0

(
k

i

)
(−1)i(b2 + c2)k−ic2i+1

×
∫ π/2

0

sin φ(1 − α cos2 φ)i+1/2

(1 − β cos2 φ)m
dφ,

where α = (c2 −b2)/c2 and β = (c2 −b2)/(a2 −b2). Next
we let t = cos2 φ, so

Jm,a = 2πb

(a2 − b2)m

k∑

i=0

(
k

i

)
(−1)i(b2 + c2)k−ic2i+1

×
∫ 1

0
t−1/2(1 − αt)i+1/2(1 − βt)−mdt.

Fig. 4 Ellipsoidal drug molecule interacting with (a) outer spherical
surface and (b) outer spherical shell volume
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On using a relationship of an Appell hypergeometric func-
tion F1 as given in eq.5 page 231 of [29] where

F1(α; β, β ′; γ ; x, y) = �(γ )

�(α)�(γ − α)

×
∫ 1

0
uα−1(1 − u)γ−α−1(1 − ux)−β(1 − uy)−β ′

du,

we may deduce

Jm,a = 4πb

(a2 − b2)m
×

k∑

i=0

(
k

i

)
(−1)i(b2 + c2)k−ic2i+1

×F1(1/2; −i − 1/2, m; 3/2; α, β).

Further, it can be written as a usual hypergeometric function
F as

Jm,a = 4πb

(a2 − b2)m

k∑

i=0

(
k
i

)
(−1)i(b2 + c2)k−ic2i+1

×
∞∑

l=0

(1/2)l(−i−1/2)l

l!(3/2)l
×F(l+ 1

2
,m; l+ 3

2
;β)αl, (6)

where (a)l is a Pocchammer’s symbol. We note that

F1(a;b,b′;c;x,y)=
∞∑

m=0

(a)m(b)m

m!(c)m F(a+m,b′;c+m;y)xm,

and (a)l = �(a+l)
�(a)

= (a)(a + 1)...(a + l − 1).

Completed formulae for liposome encapsulating drug
molecule

For the surface integral of the outer sphere referring to
Eq. 2, the energy for each case of the three shapes of the
drug molecule is obtained as

E = ηη∗ (
−AIS

3 + BIS
6

)
, (7)

where

IS
n = 2π

n − 1

n−2∑

k=0

(
2(n − 1)

2k + 1

)
a2(n−k−1)J2(n−1),a,

and η∗ is the mean surface density of the drug. The three
cases of the drug configurations correspond to the function
Jm,a given by Eqs. 4, 5 and 6 for the spherical, cylindrical
and ellipsoidal drug molecules, respectively.

Similarly, for the case of the outer spherical shell volume
given by Eq. 3, the interaction energies for the three cases
of the drug molecules can be obtained as

E = ωη∗ (
−AIV

3 + BIV
6

)
, (8)

where

IV
n = − 2π

(n − 1)(2n − 3)

n−2∑

k=0

(
2n − 3
2k + 1

)

×
[
a

2(n−k−2)+1
2 J2n−3,a2 − a

2(n−k−2)+1
1 J2n−3,a1

]

− π

(n − 1)(n − 2)(2n − 3)

n−3∑

k=0

(
2(n − 2)

2k + 1

)

×
[
a

2(n−k−2)−1
2 J2(n−2),a2 − a

2(n−k−2)−1
1 J2(n−2),a1

]
,

and Jm,a for the spherical, cylindrical and ellipsoidal
molecules can be found in Eqs. 4, 5 and 6, respectively.

Interaction energy between drug and liposome

The Dipalmitoylphosphatidylcholine (DPPC) molecular
structure is utilized in this study. We employ the coarse grain
configuration proposed by Martini et al. [27], where Q0 and
Qa represent a choline and a phosphate positions, respec-
tively, which are assumed to be a head group. A glycerol
group is referred as Na and it is an intermediate layer. Fur-
ther, the carbon tail group is defined as C1. The values of
the Lennard-Jones parameters σ and ε corresponding to Q0,
Qa , Na and C1 are taken from the work of Martini et al. [27],
and they are given in Table 1.

A liposome consists of two layers of lipid, hence the
summation of six interaction energies belonging to the six
component layers of lipid are needed to determine the total
energy of the system. These six layers comprise two spher-
ical surfaces, that are two intermediate layers, and four
volume spherical shells, that are two head group layers and
two tail group layers. The physical dimensions of the lipid
layer and the structure of a liposome are detailed in Fig. 5.

In this study, Doxorubicin (DOX) is employed to demon-
strate the interaction behavior for a drug in a liposomal
capsule, where its chemical formula is C27H29NO11. The

Table 1 Values of well depth ε and Van der Waals diameter σ used in
this model

ε (kJ/mol) σ (nm)

Q0 5.0000 0.4700

Qa 5.6000 0.4700

Na 4.5000 0.4700

C1 2.3000 0.4700

C 0.4393 0.3431

H 0.1841 0.2571

O 0.2510 0.3118

N 0.2887 0.3261
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Fig. 5 A liposome comprising
two layers of lipid

Van der Waals parameters σ and ε for each atomic type of
the drug molecule, which are C, H, N, and O, are taken
from Rappé et al. [30], and are presented in Table 1. Further,
we assume that the drug is comprised of uniformly distri-
buted DOX molecules, therefore the atomic proportion of the
molecule is used to present the chemical structure of the drug.

The attractive and the repulsive energies are calculated
from entire possible matching between atoms from the
drug molecule and atoms from each layer of the liposome.
Therefore, the Lennard-Jones constants A and B can be
determined as follow. Firstly, the head group has eight pos-
sible matching that are C, H, N, and O interacting with Q0

and Qa . Additionally, there are 27 carbon atoms, 29 hydro-
gen atoms, one nitrogen atom and 11 oxygen atoms, so the
total interaction pairs are 2(27 + 29 + 1 + 11) = 136. Next,
the intermediate group has one type of lipid molecule that is
Na hence the total interaction pairs are 68. Finally, a number
of an atomic group of the tail group is similar with the inter-
mediate group where it comprises of only C1. Therefore,
there are 68 interaction pairs for the tail group.

The attractive and repulsive constants A and B for each
layer interacting with DOX can be obtained by employing
an empirical mixing rule. Table 2 shows applicable values
A and B used in this study where AH , AI , and AT are
total attractive constants for the head group, the interme-
diate group, and the tail group, respectively, and BH , BI ,

and BT are total repulsive constants for the head group, the
intermediate group, and the tail group, respectively.

Table 2 Attractive and Repulsive constants for three layers of lipo-
some interacting with DOX

A (kJ nm6 mol−1) B (10−5 kJ nm12 mol−1)

Head (H) 0.01778 6.90489

Intermediate (I) 0.01639 6.36178

Tail (T) 0.01172 4.54817

According to Martini et al. [27], there are two interaction
sites for the head group and the intermediate layer, where
there are eight interaction sites for the tail group. These
interaction sites will contribute to the mean surface and the
mean volume densities of the system. Hence, the mean sur-
face density η and the mean volume density ω for each layer
of the liposome can be obtained by

ωH (r) = 2Nlipids(r)

4π(r + 4.336)3/3
,

ηI (r) = 2Nlipids(r)

4π(r + 4.336)2
,

ωT (r) = 8Nlipids(r)

4π(r + 4.336)3/3
,

where r is the inner radius of the liposome, ωH and ωT

are the mean volume densities of the head and the tail,
respectively, and ηI is the mean surface density of the inter-
mediate layer. Further, Nlipids(r) represents a number of
lipid molecules which can be obtained by Nlipids(r) =
[4π(r + 4.336)2 + 4πr2]/0.64, where the value of 4.336
nm is the thickness of a lipid bilayer and 0.64 nm2 is one
lipid head group area. For the mean surface density of DOX,
η∗, we derive from the molar volume by assuming a spher-
ical shape of DOX cluster, so it is 0.3047 molecule/nm2.
The total energy for each of the three shapes of drug
encapsulated in a liposome is given by

Etot = EouterH + EouterI + EouterT + EinnerT

+EinnerI + EinnerH , (9)

where each energy term refers to E in the completed formu-
lae subsection as defined by Eqs. 7 or 8. In other words, the
total energy of each system comprises of

– Two interaction energies between a drug molecule,
and the inner and the outer head groups, EinnerH and
EouterH .



J Mol Model (2014) 20:2504 Page 9 of 11, 2504

Fig. 6 First assumption: energy
versus radius of liposome where
(left) surface area of drug is
20,000 nm2 and (right) surface
area of drug is 30,000 nm2

– Two interaction energies between a drug molecule, and
the inner and the outer intermediate groups, EinnerI and
EouterI .

– Two interaction energies between a drug molecule, and
the inner and the outer tail groups, EinnerT and EouterT .

Numerical result and discussion

We consider two hypotheses for the encapsulation of DOX
inside a liposome. Firstly, we fix the surface area of the drug
molecule and vary the radius of the liposome. Secondly, we
fix the radius of the liposome and vary the sizes of the drug
molecules.

Fix surface area of drug molecule

In this subsection, we also have two assumptions. Firstly, on
the equality of the surface area we assume that the radius
of the cylindrical drug molecule is equal to the radius of
the spherical molecule, and the minor axis of the ellipsoidal
drug molecule is 49/50 times the radius of the sphere where
the energy profiles are presented in Fig. 6. Secondly, we
assume that the length of the cylindrical drug molecule is
twice the radius of the spherical molecule, and the major
axis of the ellipsoidal drug molecule is 16/15 times the
radius of the sphere where the energy profiles are presented
in Fig. 7. The purpose of both assumptions is to manage

their sizes to give rise to similar shapes. Further, the val-
ues 49/50 and 16/15 are chosen to present the ellipsoidal
structures that closely related to the spherical ones.

From Figs. 6 and 7, the spherical case gives the low-
est energy value at the equilibrium position. However, the
appropriate shape of a drug molecule also depends on the
the size of the liposome. That is when the radius of the
liposome is larger than that giving the minimum energy
for the spherical-shaped drug, we may use ellipsoidal or
cylindrical shape since they give lower energies at the equi-
librium configurations and the system will be more stable.
Moreover, our two assumptions give similar result that is a
spherical drug is suitable for a small liposome and once a
liposome gets larger, a cylindrical or an ellipsoidal molecule
is needed.

Fix inner radius of liposome to be r = 50 nm

In this subsection, we choose r = 50 which is a radius of
the liposome found in experiments.

From the previous subsection, we find that the spherical
drug molecule gives the lowest energy value comparing to
the cylindrical and the ellipsoidal ones. For the liposome of
radius 50 nm, the most suitable radius for the spherical drug
molecule is approximately 49.726 nm as shown in Fig. 8.
This minimum energy is around −6,642 kJ/mol, which
is a potential well for the DOX encapsulated in the lipo-
some. We comment that the liposome will form without the

Fig. 7 Second assumption:
Energy versus radius of
liposome where (left) surface
area of drug is 20,000 nm2 and
(right) surface area of drug is
30,000 nm2
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Fig. 8 Energy profile for a spherical drug molecule encapsulated in
the liposome of radius 50 nm

presence of DOX molecule, and the value of potential well
is determined for the comparison purpose between different
shapes of DOX. At this radius, the interacting surface area
of the sphere is 31,072 nm2. Next, we investigate the ellip-
soidal drug molecule where its surface area is equal to the
spherical case. Noting that the surface areas for the three
shapes of the drug molecules are calculated from

Area(sphere) = 4πb2,

Area(cylinder) = 2πbL + 2πb2,

Area(ellipsoid) = 2πb2
[

1 + c sin−1(1 − b2/c2)

b(1 − b2/c2)

]
.

Figure 9 shows that the energy decreases when the value of
minor axis b increases. We note that the value of the major
axis c is varried to give the total surface area of 31,072 nm2.
The trend of the minimum energy is depended on the ratio
between the major axis c and the minor axis b. We find that
the lowest energy occurs at the ratio of the ellipsoidal axes
being 1 which turns to be a spherical structure.

However, the cylindrical drug molecule cannot have the
surface area up to 31,072 nm2. For the liposome radius 50
nm, there is no b such that 31072 = 2πbL + 2πb2 and
(L/2)2 + b2 < 502 where the inequality represents the

Fig. 9 Energy profile for an ellipsoidal drug molecule of various
minor axis with the fixed surface of 31,072 nm2 and r = 50 nm. Not-
ing that the value of the major axis is varied to give the total surface of
31,072 nm2

Fig. 10 The minimum energy of the system for each radius b of
cylindrical drug molecule with r = 50 nm

largest possible of a cylinder encapsulated in a liposome
of radius 50 nm. Then we investigate the possible mini-
mum energy for various sizes of cylindrical drug molecules
that can be encapsulated in the liposomal capsule of radius
50 nm. We find that the energy cannot be lower than
−400 kJ/mol as graphically shown in Fig. 10. From Figs. 9
and 10, these graphs confirm that the spherical shape has the
lowest minimum energy at the equilibrium position.

All in all, we find that the spherical drug is the best choice
among these three structures. In mathematical point of view,
we can choose an appropriate size of a liposome when we
have a restriction on the drug size and shape, and we can
determine an appropriate size of a drug when we have a
restriction on the liposome size.

Summary

This study examines the liposome system filled with a DOX
cluster as a drug transporter. We assume three shapes for
the DOX which are a sphere, a cylinder, and an ellipsoid.
The objectives of the study are to determine the energy
for each shape of DOX, and to obtain the best shape of
the drug among those three possible ones. Further, we also
investigate the appropriate size of the DOX cluster and
the liposome. To accomplish these objectives, we utilize
elementary mathematical modelling together with special
functions. We obtain a mathematical model for the system
of the liposome encapsulating DOX inside, and we com-
pare the energy profiles. Two conditions are studied here
which are (i) fixing the surface area of the drug and (ii) fix-
ing the radius of the liposome. In this study, the spherical
DOX is found to be the most suitable shape for the system
under both conditions. In terms of varying liposome radius,
the appropriate shape of the drug is dependent on the size
of the liposome. Once the liposome radius is fixed to be 50
nm, a suitable radius of the spherical DOX is approximately
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49.726 nm with the energy −6,642 kJ/mol. For the ellip-
soidal case, its axes can be modified to allow the system to
give this minimum energy. However, there is no equivalent
cylinder with this spherical surface area. On using the math-
ematical model, we can predict a size and a shape of a drug
molecule that can be encapsulated inside a liposome for the
use in a drug delivery system. These results can be used by
experimentalists in the sense that we can predict an appro-
priate size of a liposome for any specific size and shape of
a DOX cluster. Moreover, the energy values calculated here
can be considered as an optimum energy used to load and
unload the DOXs from the nanocapsule.
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